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Abstract

Recent developments in monocular depth estimation
have shown promising results in accurately inferring scene
geometry from single 2D images. In this project, we investi-
gate and evaluate the limitations of this technology through
two processes. 1: The generation of alternative 2D images
viewed from different perspectives when given a single 2D
image. 2: A comparison of the ’augmented perspectives’
produced by two popular monocular depth estimation algo-
rithms. While qualitative evaluations show the value and
accuracy of using monocular depth estimates in creating
augmented perspectives, the limitations are also clear.

1. Introduction
Depth estimation is a powerful technology with a myr-

iad of applications, but typically requires multiple photos
of the same scene from different angles to create an accu-
rate representation. Thus, there have been many recent ad-
vancements that investigate the accuracy and applicability
of monocular depth estimation. Our research focuses on
monocular computer vision.

We first want to test whether using a depth map in
conjunction with computer vision geometric principles is
sufficient in generating a new 2D image from a different
viewing angle, which we call an “Augmented Perspective”
task. More concretely, given a single 2D RGB image of
a scene, we want to generate an image of the same scene
when viewed from a different perspective as characterized
by some transformation matrix T . Of course, such a gener-
ated image would include empty pixels where there were
occluded objects. Assuming a known camera projection
matrix, we map the pixels in the 2D image into 3D space
with a calculated depth map, apply the transformation ma-
trix T , and reproject back into 2D to create a new RGB
image.

Second, we want to leverage a set of two popular monoc-
ular depth estimation algorithms to compare their aug-
mented perspective accuracy side-by-side. Specifically,
Monodepth 2[8] and Content-Adaptive Multi-Resolution

Merging (a.k.a. Boosting)[10].
The combination of these two questions allows us to test

the current boundaries and limitations of monocular depth
estimation algorithms and determine which, if any, is the
best fit for related tasks like image parallax.

2. Related Research
Here, we first review some of the popular monocular

depth estimation algorithms, and then review other attempts
at the ’augmented perspective’ task.

2.1. Monocular Depth Estimation Algorithms

2.1.1 Monodepth2

This leading algorithm comes from UCL, Caltech, and Ni-
antic: Monodepth2. They take a self-supervised approach
that seeks to minimize the photometric reprojection error.
Data collection comes in the form of stereo training. Prior
algorithms have not performed well when estimating depth
maps with objects in motion. Monodepth2 introduces a fea-
ture that automatically detects all of the pixels in the image
that contains a moving object and includes this image mask
in the training to significantly improve depth estimation, as
an improvement from Monodepth[7], its earlier version.

2.1.2 Multi-resolution Merging (Boosting)

Recently, researchers from Simon Fraser University and
Adobe Research suggested that besides full image loss from
the actual depth map, resolution of the depth estimation
algorithm also matters. The proposed double estimation
method optimizes for both full image estimation accuracy
and patch section estimation accuracy. We call it ”Boost-
ing” as it boosts depth map to higher resolution. We hope
that higher resolution depth map could generate more accu-
rate point clouds that lead to better reprojection results.

2.1.3 Other Monocular Depth Estimation Algorithms

Common image processing libraries also have started in-
cluding depth estimation algorithms. Popular library
Keras[3] open sourced a depth estimation algorithm in
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2021. The ease of use and limited barrier to entry for this
library speaks to the prevalence of monocular depth estima-
tion algorithms.

2.2. Augmented Perspective Attempts

2.2.1 Neural Radiance Fields

NeRF[11] is a recent effort trying to extract 3D scene from
2D images. The algorithm calculates camera rays from
viewed pixels and and generate volumetric data that can be
used to project 3D outputs. In the project demo, the authors
are able to generate realistic 3D videos from 2D images.
However, this project has to use more than one 2D images
in order to generate 3D scenes. In our project, we are trying
to generate 3D scenes with only a single image.

2.2.2 SynSin

SynSin[12] is another effrot trying to create short videos
according to a user defined trajectory from a single still im-
age. This paper uses a depth map to generate point cloud,
reprojects point cloud to different 2D views according to
transformation matrix, and uses a refinement network to fill
in the occluded pixels. While very similar to our approach,
this project uses its own depth map estimator and their re-
sults only show images viewed from slightly different an-
gles. In our project, we are trying to reuse existing depth
estimation models and generate augmented images viewed
from larger angle differences with the caveat of occluded
pixels. Being able to swap depth models helps our project
to improve without retraining.

2.2.3 Other augmented view generation work

Besides NeRF and SysSin, Li et al. [9] tried to generate im-
ages with different focuses from a single image; Evain et
al. [4] and Flynn[5] tried to generate stereo images from
a single image. Overall, multi-view generation from single
images seem to be a well studied problem and many of them
requires depth map generation as a prior condition. Hence
our project focuses on comparing how augmented perspec-
tive generation is affected by the choice of depth estimation
model and what we can do without using an occlusion filler.

3. Approach
3.1. Dataset

We use images from the KITTI[6] dataset. Our ideal
dataset would have various 2D images of the same 3D scene
taken from different angles where the transformation matrix
T between captures is published. While Neural Radiance
Fields (NeRF)[11] has a dataset that perfectly encompasses
this, they do not publish the camera intrinsics used, which is
essential for the initial 2D to 3D mapping in an augmented

perspective task. While there are deep learning based single
image calibration models like DeepCalib[1], it adds unnec-
essary complexity to this project and would be hard to han-
dle within the time-frame of this project. Moreover, most of
the NeRF images were computer generated and had trans-
parent background colors. This poses as a second challenge
in adopting NeRF as our dataset as monocular depth algo-
rithms expect a full, realistic scene. Because of this, we
ultimately chose KITTI as the best candidate.

Figure 1: Sample image from KITTI dataset

3.2. Evaluation

Given the challenges of empty pixels in the generated
2D image and scaling and lighting differences between the
three algorithms and the ground truth image, we will use the
following evaluation scheme. Instead of comparing pixel-
by-pixel differences, we will run each output image through
an edge detection model to pull only the most essential
frameworks out of the images. Moreover, since we do not
have ground truth images after the reprojection, we plan to
reproject a augmented image back to zero angle and com-
pare with input image to see whether a rotated image can be
restored to the original. Lastly, the augmented images will
be evaluated qualitatively as well.

4. Technical Approach

4.1. Compute Depth Map from Input Image

From a software perspective, we create a DepthModel
class that serves as a generic entry point to interact with
each of the three algorithms. Each algorithm has its
own DepthModel subclass that bridges the gap to the
algorithm-specific implementations. Each image is evalu-
ated by each depth model and the output is saved to a com-
mon output directory with model-specific file names.

As expected, monocular depth estimation algorithms
cannot predict the absolute depth of every pixel in an image
in length units like meters or inches. Instead, they predict
it up to a scale factor. As shown above, Monodepth 2 and
Boosting use different scales to represent the final depth.
Monodepth 2 outputs inverse disparity values from the last
Sigmoid step in its network, which is proportional to depth.
Boosting, on the other hand, outputs an inverse scaled depth
from 1.0 to 0.
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Figure 2: Our processing pipeline.

As result, the colorized output from each model differ by
a lot, as shown in Figure 3. In the output of Monodepth 2,
closer pixels are represented with darker colors; whereas in
Boosting, closer pixels are represented with brighter pixels
due to inverse depth. This poses a challenge to our subse-
quent point cloud generation algorithms as it expect single
channel depth map with closer pixels represented by darker
colors (i.e. smaller value in greyscale).

Figure 3: Colorized depth maps from Monodepth 2 (top)
and Boosting (bottom)

4.2. Normalizer

To resolve both issues, we made attempts to normalize
the two depth maps. Firstly we scale the inverse disparity
output of Monodepth 2 from 1 to 1000. 0 is avoided to
prevent divide-by-zero problem in later steps. Then we also
scale the output of Boosting model from 999 to 1 and deduct
it from 1000 to have an output range of 1 to 1000 as well.
Lastly, although both depth maps are scaled from 1 to 1000,
their distribution is still very different.

As shown by Figure 4, depth from Monodepth 2 is
mainly squeezed around 0 to 20; whereas depth from Boost-
ing is more evenly distributed from 1 to 1000. This creates
problem in later steps when applying transformation matri-
ces as different depth distribution requires different transla-
tional values. Therefore, we normalized both depth distri-

Figure 4: Histogram of scaled depth from Monodepth 2
(left) (95th percentile = 17.6 and Boosting (right) 95th per-
centile = 963.9

Figure 5: Histogram of normalized depth from Monodepth
2 (left) and Boosting (right) with the same 95th percentile

bution so that their 95 percentile are the same. This is ef-
fectively dividing depth output from Boosting by 54.8. As
shown in Figure 5, output from both models are normalized
to the same range. Figure 6 represents final single channel
greyscale depth map from both models with closer pixels
represented by darker colors.

4.3. Generating Point Cloud

With depth map formatted in (u, v, z) and a known cam-
era matrix M , we were able to calculate a 3D point cloud in
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Figure 6: Normalized greyscale depth maps from Mon-
odepth 2 (top) and Boosting (bottom)

(x, y, z) format using Equation 1.


x
y
z
1

 = zM−1


u
v
1

1/z

 (1)

4.4. Construct Transformation Matrix

The next step would be transforming the camera matrix
such that the same 3D world scene can be reprojected to a
different perspective. In the transformation matrix, we had
to consider both rotations and translations since rotations
alone would cause image to go out of scope. Instead we
should translate and rotate the image through the following
steps to make sure the scene stays mostly in the middle.

Figure 7: Initial Camera Position

From initial camera position in Figure 7, we first trans-
late the image to the right as shown in Figure 8, which is
negative x-translation. This gives room for the camera to
rotate while keeping the object in the center.

Figure 8: Move Horizontally

From Figure 8, we then rotate the camera, in this exam-
ple, about +y axis by 15 degrees. As shown in Figure 9, the
object remains in the center of camera.

Figure 9: Rotate Camera

After applying translations in addition to rotations, we
obtain the actual transformation matrix like the example in
Equation 2 with 15 degree +y rotation and -0.3 x translation.

T =

[
R T
0 1

]
=


0.966 0 0.259 −0.3

0 1 0 0
−0.259 0 0.966 0

0 0 0 1

 (2)

4.5. Reproject Image

Then we obtain the updated camera projection matrix
M ′ = MT and then apply M ′ to all 3D coordinates, Pn,
from the point cloud to obtain the reprojected image co-
ordinates p′n = (u′

n, v
′
n). Then we make the assignment

that pixel color at p′n = (u′
n, v

′
n) is the same as the pixel

color at pn = (un, vn) in a newly created numpy array with
the same dimension as the original input image for all three
RGB channels. When reprojected pixels falls outside the
image frame, they are ignored. Moreover, it is possible for
multiple 3D points to be reprojected to the same 2D image
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coordinates. In this case, the closer 3D point always wins.
Please see our Python code below for the detailed algorithm.

1 M_square = np.diag(4)
2 M_square[:3, :] = M
3 M_inv = np.linalg.inv(M_square)
4 M_new = M.dot(RT)
5 H, W, C = image.shape
6 new_image = np.zeros_like(image)
7 depth_color = {}
8 for u in range(W):
9 for v in range(H):

10 z = depth_map[v, u]
11 img_h = np.array([u, v, 1, 1.0 / z])
12 world_p_h = z * M_inv.dot(img_h.T)
13 world_p_h /= world_p_h[-1]
14 p_ = M_new.dot(world_p_h)
15 p_ /= p_[-1]
16 u_ = round(p_[0])
17 v_ = round(p_[1])
18 if u_ < 0 or u_ >= W \
19 or v_ < 0 or v_ >= H:
20 continue
21 if (v_, u_) not in depth_color \
22 or z < depth_color[(v_, u_)]["depth"]:
23 depth_color[(v_, u_)] = \
24 {"depth": z, "color": image[v,u]}
25 for k, v in depth_color.items():
26 new_image[k[0], k[1]] = v["color"]

4.6. Image-level Post-processing

Figure 10: Original reprojected image (top) and final filled
image (bottom)

By the nature of our reprojection pipeline, adjacent pix-
els in the original image may reproject to the same pixel
in the augmented image. This manifests in random, empty
black pixels in the new image. So, we counteract this effect
while making sure to maintain the integrity of the parts of
the image that should indeed contain empty pixels. After
the image is reprojected, we fill all of the empty pixels that
have at least 4 (out of 8 total) colored neighboring pixels
with their average color. This ensures that empty pixels due
to occlusions stay empty while as many unexpected empty

pixels are filled. This filled image is the final product shown
in the following section.

5. Experiment

5.1. Experimental Setup

We ran each of five images from the KITTI dataset
through our augmented perspective pipeline to predict what
the image would look like if the camera were panned up to
25 degrees and translated to keep the scene centered. More
specifically, we imagine a camera in the reconstructed 3D
scene smoothly panning from the left side of its original
position (while keeping the scene centered), to its original
position when the original photo was taken, to the right side
of its original position (while keeping the scene centered).

The estimated image on the extreme left hand side was
a 25 degree clockwise rotation and a 0.6 unit translation
leftward. The estimated image in the center had no rotation
or translation. The estimated image on the extreme right
hand side was a 25 degree counter-clockwise rotation and a
0.6 unit translation rightward.

In this entire range, 60 frames were estimated and
stitched together to create a GIF. In the end, for each of
the five images, we had one GIF that utilized Monodepth 2
and another GIF that utilized Multi-resolution Merging.

5.2. Qualitative Results

We first discuss results for Monodepth 2 and Boosting
separately, and then consider them in comparison with each
other. Visit our public Google Drive folder1 for a copy of
all of our final reprojected images.

5.2.1 Qualitative Results for Monodepth2

Below, we show a sample of 5 equally-spaced images from
the entire hue of the 60 total frames for Monodepth2. For a
full view of the GIF, visit a sample on GitHub2.

These images are very promising and make sense. Start-
ing from the original image in the center, as the camera ro-
tates clockwise and pans left, we move towards the image
on the top. The car in the bottom right pulls away from
the scene because it is at a closer depth of field than the
buildings in the background. It makes sense for those build-
ings to retreat out of view faster. We also notice that by
the end of the 25 degree rotation and the translation, the or-
ange vehicle is now aligned parallel with the camera’s field
of view. The side of the vehicle is no longer visible, which
also makes sense. There are indeed some noisy artifacts
that are a byproduct of our vision pipeline. For example, in

1https://tinyurl.com/augmented-perspective
2https://github.com/hsysuper/augmented-

perspective/blob/main/kitti3 output.gif
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Figure 11: Sample of predicted augmented perspective im-
ages under Monodepth2 (clockwise rotations from top to
bottom in degrees: 25, 12.5, 0, -12.5, -25)

the orange vehicle’s windshield, there are gray/white pix-
els that bleed through the expected black pixels. After re-
projecting the pixels in the 3D world back into 2D to cre-
ate this new image, there may not be a black pixel from the
original windshield that projects into the new image. In fact,
a gray pixel from the building in the background may end
up being the only pixel that projects into the windshield’s
spot.

Starting from the original image in the center, as the cam-
era rotates counter-clockwise and pans right, we move to-
wards the image on the bottom. We see a similar effect
showing up on the left side where the vehicles begin to pro-
trude. We also notice that the camera is now panning over
the hood of the car in the bottom right, much like a cine-
matic shot would entail.

Figure 12: Sample of predicted augmented perspective im-
ages under Boosting (clockwise rotations from top to bot-
tom in degrees: -12.5, -25)

5.2.2 Qualitative Results for Boosting

Below, we show two images for Boosting that were created
under the same conditions as the last two images from Fig-
ure 11.

Here, we see that the car in the bottom left protrudes out
of the new image as it is at a closer depth of field than the
store in the background. We also notice that the car in the
bottom right is no longer present after a 25 degree rotation
and small translation, implying that it is no longer in sight.
While possible, we expect at least a part of the side or hood
of the car to remain visible, simply by estimation.

5.2.3 Overall Qualitative Results

It is evident that Monodepth 2, on average, placed objects
at a closer depth than Boosting did. The cars protruded less
in the latter algorithm, and there were also very few empty
black pixels in the image. We also do not see the noisy
artifacts that we saw in Monodepth 2 where the gray/white
pixels bled through the orange vehicle’s windshield. This
is also attributed to the fact that the vehicle is predicted to
be at a large depth. The greater the depth of the pixels on
the vehicle, the more likely they’ll reproject to the expected
location in the new image.

5.3. Quantitative Results

5.3.1 L2 and SSIM Distance to Augmented Original

Due to the lack of a extensive image dataset, with included
camera intrinsics and without the use of transparent pixels,
we faced difficulties when generating meaningful quantita-
tive results. As a workaround, we used a single image with
known camera intrinsics from KITTI and applied our algo-
rithm to generate a augmented perspective of the original
image. We then applied our algorithm to the augmented
perspective to generated an estimated perspective from the
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same point of view as the original image. Then using the
original image as our ground-truth, we computed the L2 dif-
ference between our augmented_original perspective
and the original image.

From our results we find that the images produced by
the boosting algorithm are on average 18.38 % closer to the
ground-truth original image (L2 w/ edge detection).

After generating two augmented perspectives, our im-
ages had a significant number of occluded pixels. To miti-
gate the differences caused by the occluded pixels, we ap-
plied Canny edge detection[2] to focus on the position of
objects in our image. After doing so, the Boosting algorithm
produced images closer to the reference (original) image.
This contradicts our qualitative results as the Monodepth 2
algorithm produced more realistic results. An explanation
as to why the Boosting algorithm produced images that are
closer to the reference could be due to Boosting placing ob-
jects further away in the image. As a result, each object has
few occluded pixels and the overall image has significantly
fewer occluded pixels and is closer to the original image.

L2 L2(Edge)
kitti1.png 10.2× 107 9.6× 104

kitti2.png 9.6× 107 9.2× 104

kitti3.png 8.8× 107 6.7× 104

kitti4.png 9.0× 107 10.6× 104

kitti5.png 11.2× 107 16.0× 104

Table 1: L2 Diff Monodepth2 (Raw RGB vs Edge Detection)

L2 L2(Edge)
kitti1.png 7.8×107 6.1×104

kitti2.png 9.5×107 8.3×104

kitti3.png 8.4×107 6.3×104

kitti4.png 7.8×107 7.8×104

kitti5.png 9.7×107 14.6×104

Table 2: L2 Diff Boosting (Raw RGB vs Edge Detection)

SSIM(raw RGB) SSIM(Edge)
kitti1.png 0.5067 0.6758
kitti2.png 0.4402 0.7053
kitti3.png 0.5298 0.7466
kitti4.png 0.4366 0.6095
kitti5.png 0.4603 0.5773

Table 3: SSIM Between Monodepth 2 and Boosting (Raw RGB vs
Edge Detection)

t
There is also a significant disparity in runtimes between

the boosting and Monodepth2 algorithms. For the Mon-
odepth, it takes about two seconds to generate a depthmap

of the scene while boosting takes about 112 seconds to gen-
erate a depthmap of the scene.

5.3.2 Timing

While Boosting produces higher resolution results, it takes
about 112 seconds on average to generate a depth map for
the KITTI dataset using a Google Colab Pro High RAM
GPU instance in March 2022. In comparison, it only took
Monodepth 2 around 2 seconds on average to generate a
depth map for an input image. This makes Boosting much
less appealing to real time or near real time use cases.
Lastly, augmenting each image took about 11 seconds on
the same compute platform. However, this can be optimized
faster by vectorizing our algorithms and offloading part of
our algorithm to the GPU.

6. Conclusion
An overview of our project shows promising results, that

given a single image we are able to generate a realistic aug-
mented perspective, aside from the inclusion of occluded
pixels. Given the short time frame of the project, there are
additional improvements to our project we would have liked
to make. As the Boosting algorithm produces high resolu-
tion depth maps, we would have like to improve the nor-
malization of the depth map to yield better augmented per-
spectives. In addition, the 11 seconds it takes to generate
an augmented perspective can be improved with the use of
vectorized coding techniques and methods. These improve-
ments can significantly improve the quality of our outputed
images.

Our code is available on GitHub3 and is available to view
upon request.
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